
CS 537 Notes, Section #17: Translation

Buffers and Inverted Page Tables

Problem with segmentation and paging: extra memory references to access translation tables

can slow programs down by a factor of two or three. Too many entries in translation tables to

keep them all loaded in fast processor memory.

We will re-introduce fundamental concept of locality: at any given time a process is only

using a few pages or segments.

Translation Lookaside Buffer

Solution: Translation Lookaside Buffer (TLB). A translation buffer is used to store a few of

the translation table entries. It is very fast, but only remembers a small number of entries. On

each memory reference:

 First ask TLB if it knows about the page. If so, the reference proceeds fast.
 If TLB has no info for page, must go through page and segment tables to get info. Reference

takes a long time, but give the info for this page to TLB so it will know it for next reference
(TLB must forget one of its current entries in order to record new one).

TLB Organization: Show picture of black box. Virtual page number goes in, physical page

location comes out. Similar to a cache, usually direct mapped.

TLB is just a memory with some comparators. Typical size of memory: 128 entries. Each

entry holds a virtual page number and the corresponding physical page number. How can

memory be organized to find an entry quickly?

 One possibility: search whole table from start on every reference.
 A better possibility: restrict the info for any given virtual page to fall in exactly one location

in the memory. Then only need to check that one location. E.g. use the low-order bits of the
virtual page number as the index into the memory. This is the way real TLB's work.

Disadvantage of TLB scheme: if two pages use the same entry of the memory, only one of

them can be remembered at once. If process is referencing both pages at same time, TLB

does not work very well.

Example: TLB with 64 (100 octal) slots. Suppose the following virtual pages are referenced

(octal): 621, 2145, 621, 2145, ... 321, 2145, 321, 621.

TLBs are a lot like hash tables except simpler (must be to be implemented in hardware).

Some hash functions are better than others.

 Is it better to use low page number bits than high ones?
 Is there any way to improve on the TLB hashing function?

Another approach: let any given virtual page use either of two slots in the TLB. Make

memory wider, use two comparators to check both slots at once.

 This is as fast as the simple scheme, but a bit more expensive (two comparators instead of
one, also have to decide which old entry to replace when bringing in a new entry).

 Advantage: less likely that there will be conflicts that degrade performance (takes three
pages falling in the same place, instead of two).

 Explain names:
o Direct mapped.
o Set associative.
o Fully associative.

Must be careful to flush TLB during each context swap. Why?

In practice, TLB's have been extremely successful with 95% or great hit rates for relatively

small sizes.

Inverted Page Tables

As address spaces have grown to 64 bits, the side of traditional page tables becomes a problem.

Even with two-level (or even three or four!) page tables, the tables themselves can become too

large.

A solution (used on the IBM Power, Sun SPARC, and others) to this problem has two parts:

 A physical page table instead of a logical one. The physical page table is often called an
inverted page table. This table contains one entry per page frame. An inverted page table is
very good at mapping from physical page to logical page number (as is done by the
operating system during a page fault), but not very good at mapping from virtual page
number to physical page number (as is done on every memory reference by the processor).

 A TLB fixes the above problem. Since there is no other hardware or registers dedicated to
memory mapping, the TLB can be quite larger so that missing-entry faults are rare.

With an inverted page table, most address translations are handled by the TLB. When there is

a miss in the TLB, the operating is notified (via an interrupt) and TLB miss-handler is

invoked.

Shadow Tables

The operating system can sometimes be thought of as an extension of the abstractions provided by

the hardware. However, when the table format is defined by the hardware (such as for a page table

entry), you cannot change that format. So, what do you do if you you wanted to store additional

information, such as last reference time or sharing pointer, in each entry?

The general is a technique that is sometimes called a shadow table. The idea of a shadow is

simple (and familiar to Fortran programmers!):

 Consider the hardware defined data structure as an array.
 For the new information that you want to add, define a new (shadow) array.
 There is one entry in the shadow array for each entry in the hardware array.
 For each new item you want to add to the data structure, you add a new data member to

the shadow array.

For example, consider the hardware defined page table to be an array of structures:

 struct Page_Entry {

 unsigned PageFrame_hi : 10; // 42-bit page frame number

 unsigned PageFrame_mid : 16;

 unsigned PageFrame_low : 16;

 unsigned UserRead : 1;

 unsigned UserWrite : 1;

 unsigned KernelRead : 1;

 unsigned KernelWrite : 1;

 unsigned Reference : 1;

 unsigned Dirty : 1;

 unsigned Valid : 1;

 }

 struct Page_Entry pageTable[TABLESIZE];

If you wanted to added a couple of data members, you cannot simply change it to the following:

 struct Page_Entry {

 unsigned PageFrame_hi : 10;

 unsigned PageFrame_mid : 16;

 unsigned PageFrame_low : 16;

 unsigned UserRead : 1;

 unsigned UserWrite : 1;

 unsigned KernelRead : 1;

 unsigned KernelWrite : 1;

 unsigned Reference : 1;

 unsigned Dirty : 1;

 unsigned Valid : 1;

 Time_t lastRefTime;

 PageList *shared;

 }

Instead, you would define a a second array based on this type:

 struct Page_Entry { struct PE_Shadow {

 unsigned PageFrame_hi : 10; Time_t lastRefTime;

 unsigned PageFrame_mid : 16; PageList *shared;

 unsigned PageFrame_low : 16; }

 unsigned UserRead : 1;

 unsigned UserWrite : 1;

 unsigned KernelRead : 1;

 unsigned KernelWrite : 1;

 unsigned Reference : 1;

 unsigned Dirty : 1;

 unsigned Valid : 1;

 }

 struct Page_Entry pageTable[TABLESIZE];

 struct PE_Shadow pageShadow[TABLESIZE];

Copyright © 1997, 2002, 2008 Barton P. Miller

Non-University of Wisconsin students and teachers are welcome to print these notes their personal

use. Further reproduction requires permission of the author.

